# Mathematics-III (BT-301)

# notes For RGPV Bhopal AICTE Students

## OBJECTIVES

OBJECTIVES: The objective of this course is to fulfill the needs of engineers to understand
applications of Numerical Analysis, Transform Calculus and Statistical techniques in order to
acquire mathematical knowledge and to solving wide range of practical problems appearing in
different sections of science and engineering. More precisely, the objectives are:

To introduce effective mathematical tools for the Numerical Solutions algebraic and
transcendental equations.

To enable young technocrats to acquire mathematical knowledge to understand Laplace
transformation, Inverse Laplace transformation and Fourier Transform which are used in
various branches of engineering.

To acquaint the student with mathematical tools available in Statistics needed in various
field of science and engineering

## Syllabus

**UNIT 1:**

Numerical Methods – 1: (8 hours): Solution of polynomial and transcendental
equations – Bisection method, Newton-Raphson method and Regula-Falsi method. Finite
differences, Relation between operators, Interpolation using Newton’s forward and backward
difference formulae. Interpolation with unequal intervals: Newton’s divided difference and
Lagrange’s formulae.

**UNIT 2**:

Numerical Methods – 2: (6 hours): Numerical Differentiation, Numerical integration:
Trapezoidal rule and Simpson’s 1/3rd and 3/8 rules. Solution of Simultaneous Linear Algebraic
Equations by Gauss’s Elimination, Gauss’s Jordan, Crout’s methods, Jacobi’s, Gauss-Seidal, and
Relaxation method.,

**UNIT 3**:

Numerical Methods – 3: (10 hours): Ordinary differential equations: Taylor’s series,
Euler and modified Euler’s methods. RungeKutta method of fourth order for solving first and
second order equations. Milne’s and Adam’s predicator-corrector methods. Partial differential
equations: Finite difference solution two dimensional Laplace equation and Poission equation,
Implicit and explicit methods for one dimensional heat equation (Bender-Schmidt and CrankNicholson methods), Finite difference explicit method for wave equation.

**UNIT 4**:

Transform Calculus: (8 hours): Laplace Transform, Properties of Laplace Transform,
Laplace transform of periodic functions. Finding inverse Laplace transform by different methods,
convolution theorem. Evaluation of integrals by Laplace transform, solving ODEs by Laplace
Transform method, Fourier transforms.

**UNIT 5**:

Concept of Probability: (8 hours): Probability Mass function, Probability Density
Function, Discrete Distribution: Binomial, Poisson’s, Continuous Distribution: Normal
Distribution, Exponential Distribution.

## NOTES

**Unit 1****Unit 2****Unit 3****Unit 4****Unit 5**

## Books Recommended

Textbooks/References:
1. P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 2nd
Edition, Reprint 2012.

2. S.S. Sastry, Introductory methods of numerical analysis, PHI, 4th Edition, 2005.

3. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

4. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2010.

5. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications,
Reprint, 2010.

6. Veerarajan T., Engineering Mathematics, Tata McGraw-Hill, New Delhi, 2008.

7. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall,
2003 (Reprint).

8. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.

9. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley,
1968. Statistics